Изучение внутреннего строения земли

Основные методы изучения внутреннего строения Земли.

Геологические методы.

Одним из главных геологических методов является метод непосредственного наблюдения и всестороннего исследования вещества слагающего земную кору. Он основан на изучении естественных обложениях горных пород на склонах, горах, равнин, морей, керно-буровых скважинах.

  1. Геофизические методы.
  2. + Возможность изучения больших глубин.
  3. — Являются косвенными (они дают представление о размещении внутри Земли не горных пород различного состава, а масс с различными физическими свойствами.

Предназначены для выявления физических полей и не объясняют закономерности размещения вещества, так как одними и теми же физическими свойствами могут обладать разные горные породы, а расшифровка геофизических результатов неоднозначна.

1. Сейсмический метод.

– основан на изучении скорости распределения упругих волн, которые возникают при землетрясениях или искусственных взрывах.

Используют 2 типа волн:

  • Продольные. (Р-волны (первичные)) – самые быстрые. Возникают как реакциясреды на изменение объема. Распространены в жидких и теплых телах.
  • Поперечные. (S-волны (вторичные)) – боле медленные, представляют собой реакцию среды на изменение формы. Распространяются в твёрдых телах.

5,52 г/см3 – средняя плотность Земли.

2,72 г/см3 – средняя плотность земной коры.

2. Гравиметрический метод.

— изучается поле силы тяжести, зависящее от расположения масс с различной плотностью внутри земного шара.

3. Магнитометрический метод.

— исследуется магнитное поле Земли, зависящее от размещения масс с различными магнитными свойствами.

4. Геотермический метод.

— основан на изучении теплового поля Земли, степени и характера распределения температур с глубиной и величины теплового потока направления и внутренних частей Земли к поверхности.

5. Метод актуализма.

— один из методологических подходов в естественных науках. Он опирается на принцип однообразия, по которому геологические процессы, происходящие в прошлые геологические эпохи, и явления вызывавшиеся этими процессами, имеют много общего с современными

>Внутреннее строение Земли>Внутреннее строение и геофизические особенности Земли

Методы изучения внутреннего строения и состава Земли.
Сейсмическая модель Земли.
Геофизическая характеристика Земли.

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами, главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary — первичные), более «медленные» поперечные волны называют S-волны (от англ. secondary — вторичные). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты — если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Сейсмическая модель Земли

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км. На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга, хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора, ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой, состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная, или кристаллическая, кора, образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» — сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.

Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой — подкоровая мантия — простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» — слабый и «sphair» — сфера); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone. Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом.м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы — твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии, отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см3; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см3. В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см3 в подкоровой части до 5,5 г/см3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см3 — происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см3.

Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

  1. сжатием за счет веса вышележащих оболочек (литостатическое давление);

  2. фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

  3. различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*109 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. Средняя величина геотермического градиента в верхней части коры составляет 30 0С/км и колеблется от 200 0С/км в областях современного активного магматизма до 5 0С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0С/км, а в мантии – менее 1 0С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.

Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации, т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло, возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 • 10–4 %, в осадочных породах – 3,2 • 10–4 %, в то время как в океанической коре она ничтожно мала: около 1,66 • 10–7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло, сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы, обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0С, на глубине 410 км – 1500 0С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0С, на глубине 5150 км – 3300 0С, в центе Земли – 3400 0С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 900) и наименьшим на экваторе (7-80).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe2O4), гематит (Fe2O3), ильменит (FeTiO2), пирротин (Fe1-2S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию — изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Тема 1.2. Сейсмический метод

Долгое время сейсмология, одним из основателей которой является русский физик и геофизик академик Борис Борисович Голицын (1862-1916),была наукой о землетрясениях и сейсмических волнах.

В настоящее время с помощью сейсмического метода производится измерение и анализ всех движений, которые регистрируются сейсмографами на поверхности твердой Земли.

Сейсмические волны — это, по существу, низкочастотные звуковые волны в твердой упругой Земле. Они делятся на объемные и поверхностные. Объемные волны бывают двух типов — продольные и поперечные. Продольные волны — это упругие волны сжатия, а поперечные волны — упругие волны сдвига. Распространение объемных волн в упругой Земле подобно распространению световых лучей в оптических средах.

Продольные и поперечные сейсмические волны, в отличие от поверхностных волн, распространяющихся вдоль земной поверхности, пронизывают весь объем (тело) нашей планеты. Поэтому они названы объемными волнами. Они позволяют просвечивая нашу планету, выявить ее внутреннее строение без непосредственного проникновения в ее недра. Скорость продольных волн в 1,7 раза больше, чем скорость поперечных волн. Они регистрируются на сейсмограммах раньше и называются первичными, или волнами Р, поперечные волны именуются вторичными ( волны S).

Скорости объемных волн выражаются через модули упругости (К- модуль сжатия, μ — модуль сдвига) и плотность ρ среды в данной точке:

— продольные волны

— поперечные волны

Согласно данным, полученным сейсмологией, Земля разделяется на три основные области: кору, мантию и ядро. Кора отделена от мантии резкой сейсмической границей, на которой свойства скачкообразно изменяются (возрастают скорости продольная и поперечная и плотность). Эта граница открыта в 1909 г. югославским сейсмологом Мохоровичичем и названа границей Мохоровичича. В связи с этим открытием земная кора получила четкое определение: земной корой называют наружный слой Земли, расположенный выше границы М. Толщина земной коры нерегулярна, она изменяется от 7-10 км в океанических областях до нескольких десятков километров в горных районах континентальных областей.(средняя толщина принята- 35 км. Ниже коры в интервале глубин 35-2885 км расположена силикатная оболочка, или мантия Земли. Наконец, центральная часть Земли, расположенная в интервале глубин 2885-6371 км, образует ядро Земли.

Сейсмическая граница на глубине 2885 км между мантией и ядром Земли была открыта немецким сейсмологом Гутенбергом в 1914 г. Эта граница не имеет специального названия. Граница мантия — ядро является наиболее резкой границей раздела в недрах Земли. Она сильно отражает объемные Р — и — волны и сильно преломляет Р-волны. На этой границе скорость Р-волн скачком падает от значения 13,6 км/ с в мантии до значения 8,1 км/с в ядре. Скорость поперечных волн соответственно уменьшается от 7,3 км/с до нуля.

Плотность,

Наоборот, возрастает от 5,5 до 10,0 г/ см 3. Тот факт, что земное ядро не пропускает через себя поперечные волны, позволил сделать вывод, что ядро является жидким. В настоящее время на основе более детальных исследований получены данные, что внутреннее ядро находится в твердом состоянии.

На основе изучения характеристик поля упругих колебаний разработан и внедрен геофизический метод — сейсморазведка, применяемый с целью исследования строения земной коры, поисков и разведки месторождений полезных ископаемых.

В методе используются искусственные источники возбуждения упругих колебаний — взрывы, вибросейс и др. Упругие волны могут отражаться и частично преломляться на границах различных типов пород и возвращаться на поверхность земли, где регистрируются специальной аппаратурой. Измеряя время распространения волн от их источника до точки регистрации, амплитуду, частоту и другие характеристики, получают информацию о слоях пород и углах их наклона, т. е. появляется возможность решать структурно — геологические задачи. Сейсморазведку широко применяют при поисках и разведке месторождений нефти и газа, углей, каменной соли, бокситов, в рудной геологии и др.

Сейсмические методы исследования

Поиск Лекций

12345678910

Механика

Слух дельфинов

У дельфинов есть удивительная способность ориентироваться в морских глубинах. Эта способность связана с тем, что дельфины могут издавать и принимать сигналы ультразвуковых частот, главным образом от 80 кГц до 100 кГц. При этом мощность сигнала достаточна, чтобы обнаружить косяк рыбы на расстоянии до километра. Сигналы, посылаемые дельфином, представляют собой последовательность коротких импульсов, имеющих длительность порядка 0,01–0,1 мс.

Для того, чтобы сигнал был препятствием отражён, линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что ультразвуковая волна имеет острую направленность излучения, что очень важно для эхолокации, и намного медленнее затухает при распространении в воде.

Дельфин также способен воспринимать очень слабые отражённые сигналы звуковой частоты. Например, он прекрасно замечает маленькую рыбку, появившуюся сбоку на расстоянии 50 м.

Можно сказать, что дельфин обладает двумя типами слуха: он может направленно, вперёд, посылать и принимать ультразвуковой сигнал и может воспринимать обычные звуки, приходящие со всех сторон.

Для принятия остро направленных ультразвуковых сигналов у дельфина имеется вытянутая вперёд нижняя челюсть, по которой волны эхо-сигнала поступают к уху. А для принятия звуковых волн относительно низких частот, от 1кГц до 10 кГц, по бокам головы дельфина, где когда-то у далеких предков дельфинов, живших на суше, были обыкновенные уши, имеются наружные слуховые отверстия, которые почти заросли, однако звуки они пропускают прекрасно.

Может ли дельфин, обнаружить маленькую рыбку размером 15 см сбоку от себя? Скорость звука в воде принять равной 1500 м/с. Ответ поясните.

Конец формы

Начало формы

Умение великолепно ориентироваться в пространстве связано у дельфинов с их способностью излучать и принимать

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны

Конец формы

Начало формы

Для эхолокации дельфин использует

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны

Сейсмические волны

При землетрясении или крупном взрыве в коре и толще Земли возникают механические волны, которые называются сейсмическими. Эти волны распространяются в Земле и могут быть зарегистрированы при помощи специальных приборов – сейсмографов.

Действие сейсмографа основано на том принципе, что груз свободно подвешенного маятника при землетрясении остаётся практически неподвижным относительно Земли. На рисунке представлена схема сейсмографа. Маятник подвешен к стойке, прочно закреплённой в грунте, и соединен с пером, чертящим непрерывную линию на бумажной ленте равномерно вращающегося барабана. При колебаниях почвы стойка с барабаном также приходят в колебательное движение, и на бумаге появляется график волнового движения.

Различают несколько типов сейсмических волн, из них для изучения внутреннего строения Земли наиболее важны продольная волна P и поперечная волна S. Продольная волна характеризуется тем, что колебания частиц происходят в направлении распространения волны; эти волны возникают и в твёрдых телах, и в жидкостях, и в газах. Поперечные механические волны не распространяются ни в жидкостях, ни в газах.

Скорость распространения продольной волны примерно в 2 раза превышает скорость распространения поперечной волны и составляет несколько километров в секунду. Когда волны P и S проходят через среду, плотность и состав которой изменяются, то скорости волн также меняются, что проявляется в преломлении волн. В более плотных слоях Земли скорость волн возрастает. Характер преломления сейсмических волн позволяет исследовать внутреннее строение Земли.

Какое(-ие) утверждение(-я) справедливо(-ы)?

А. При землетрясении груз маятника сейсмографа совершает колебания относительно поверхности Земли.

Б. Сейсмограф, установленный на некотором расстоянии от эпицентра землетрясения, сначала зафиксирует сейсмическую волну P, а затем волну S.

1) только А 2) только Б

3) и А, и Б 4) ни А, ни Б

Начало формы

Сейсмическая волна P является

1) механической продольной волной

2) механической поперечной волной

3) радиоволной

4) световой волной

Конец формы

Начало формы

На рисунке представлены графики зависимости скоростей сейсмических волн от глубины погружения в недра Земли. График для какой из волн (P или S) указывает на то, что ядро Земли находится не в твёрдом состоянии? Ответ поясните.

Анализ звука1

При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и каковы их амплитуды. Такое установление спектра сложного звука называется его гармоническим анализом.

Раньше анализ звука выполнялся с помощью резонаторов, представляющих собой полые шары разного размера, имеющих открытый отросток, вставляемый в ухо, и отверстие с противоположной стороны. Для анализа звука существенно, что всякий раз, когда в анализируемом звуке содержится тон, частота которого равна частоте резонатора, последний начинает громко звучать в этом тоне.

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими методами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, а следовательно, имеющее тот же спектр, а затем это колебание анализируется электрическими методами.

Один из существенных результатов гармонического анализа касается звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поёт на одной и той же ноте различные гласные? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полости рта и глотки? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно: гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причём эти области лежат для каждой гласной всегда на одних и тех же частотах независимо от высоты пропетого гласного звука.

Можно ли, используя спектр звуковых колебаний, отличить один гласный звук от другого? Ответ поясните.

Конец формы

Начало формы

Гармоническим анализом звука называют

А. установление числа тонов, входящих в состав сложного звука.

Б. установление частот и амплитуд тонов, входящих в состав сложного звука.

Правильный ответ

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

Конец формы

Начало формы

Какое физическое явление лежит в основе электроакустического метода анализа звука?

1) преобразование электрических колебаний в звуковые

2) разложение звуковых колебаний в спектр

3) резонанс

4) преобразование звуковых колебаний в электрические

Анализ звука

При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и каковы их амплитуды. Такое установление спектра сложного звука называется его гармоническим анализом.

Раньше анализ звука выполнялся с помощью резонаторов, представляющих собой полые шары разного размера, имеющих открытый отросток, вставляемый в ухо, и отверстие с противоположной стороны. Для анализа звука существенно, что всякий раз, когда в анализируемом звуке содержится тон, частота которого равна частоте резонатора, последний начинает громко звучать в этом тоне.

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими методами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, а следовательно, имеющее тот же спектр, а затем это колебание анализируется электрическими методами.

Один из существенных результатов гармонического анализа касается звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поет на одной и той же ноте различные гласные? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полости рта и глотки?

Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причем эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука.

Какое физическое явление лежит в основе анализа звука с помощью полых шаров?

1) резонанс

2) электрические колебания

3) отражение звука от отростка шара

4) превращение звуковых колебаний в электрические

Конец формы

Начало формы

Чем обусловлены особенности различных гласных звуков?

А.Тембром голоса человека, который их произносит.

Б.Наличием в спектрах гласных обертонов с большой амплитудой.

Правильным является ответ

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

Конец формы

Начало формы

Что понимают под гармоническим анализом звука?

1) установление громкости звука

2) установление частот и амплитуд тонов, входящих в состав сложного звука

3) установление возможности пения на одной и той же ноте различных гласных звуков

4) установление высоты сложного звука

Конец формы

Цунами1

Цунами – это одно из наиболее мощных природных явлений – ряд морских волн длиной до 200 км, способных пересечь весь океан со скоростями до 900 км/ч. Наиболее частой причиной появления цунами следует считать землетрясения.

Амплитуда цунами, а значит, и её энергия зависят от силы подземных толчков, от того, насколько близко к поверхности дна находится эпицентр землетрясения, от глубины океана в данном районе. Длина волны цунами определяется площадью и рельефом дна океана, на котором произошло землетрясение.

В океане волны цунами не превышают по высоте 60 см – их даже трудно определить с корабля или самолёта. Но их длина практически всегда значительно больше глубины океана, в котором они распространяются.

Все цунами характеризуются большим запасом энергии, которую они несут, даже в сравнении с самыми мощными волнами, образующимися под действием ветра.

Вся жизнь волны цунами может быть разделена на четыре последовательных этапа:

1) зарождение волны;

2) движение по просторам океана;

3) взаимодействие волны с прибрежной зоной;

4) обрушивание гребня волны на береговую зону.

Чтобы разобраться в природе цунами, рассмотрим мяч, плавающий на воде. Когда под ним проходит гребень, он устремляется вместе с ним вперёд, однако тут же соскальзывает с него, отстаёт и, попадая в ложбину, движется назад, пока его не подхватит следующий гребень. Затем всё повторяется, но не полностью: всякий раз предмет немного смещается вперёд. В результате мяч описывает в вертикальной плоскости траекторию, близкую к окружности. Поэтому в волне частица поверхности воды участвует в двух движениях: движется по окружности некоторого радиуса, уменьшающегося с глубиной, и поступательно в горизонтальном направлении.

Наблюдения показали, что существует зависимость скорости распространения волн от соотношения длины волны и глубины водоёма.

Если длина образовавшейся волны меньше глубины водоёма, то в волновом движении принимает участие только поверхностный слой.

При длине волны в десятки километров для волн цунами все моря и океаны являются «мелкими», и в волновом движении принимает участие вся масса воды – от поверхности до дна. Трение о дно становится существенным. Нижние слои (придонные) сильно затормаживаются, не успевая за верхними слоями. Скорость распространения таких волн определяется только глубиной. Расчёт даёт формулу, по которой можно рассчитать скорость волн на «мелкой» воде: υ=√gH.

Цунами бегут со скоростью, которая уменьшается с уменьшением глубины океана. Это означает, что их длина должна меняться при подходе к берегу.

Также при торможении придонных слоёв растёт амплитуда волн, т.е. увеличивается потенциальная энергия волны. Дело в том, что уменьшение скорости волны приводит к уменьшению кинетической энергии, и часть её превращается в потенциальную энергию. Другая часть уменьшения кинетической энергии тратится на преодоление силы трения и превращается во внутреннюю. Несмотря на такие потери, разрушительная сила цунами остаётся огромной, что, к сожалению, нам приходится периодически наблюдать в различных районах Земли.

Почему при подходе цунами к берегу растёт амплитуда волн?

1) скорость волны увеличивается, внутренняя энергия волны частично превращается в кинетическую энергию

2) скорость волны уменьшается, внутренняя энергия волны частично превращается в потенциальную энергию

3) скорость волны уменьшается, кинетическая энергия волны частично превращается в потенциальную энергию

4) скорость волны увеличивается, внутренняя энергия волны частично превращается в потенциальную энергию

Конец формы

Начало формы

Движения частицы воды в цунами являются

1) поперечными колебаниями

2) суммой поступательного и вращательного движения

3) продольными колебаниями

4) только поступательным движением

Конец формы

Начало формы

Что происходит с длиной волны цунами при подходе к берегу? Ответ поясните.

Цунами2

Цунами – это длинные волны, порождаемые мощным механическим воздействием на всю толщу воды в океане или другом водоёме.

Существует несколько причин возникновения волн цунами. В большинстве случаев цунами вызываются подводными землетрясениями. При землетрясении под водой образуется вертикальная трещина, и часть дна опускается. Дно внезапно перестает поддерживать столб воды, лежащий над ним. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню – среднему уровню моря, и порождает серию волн.

Подвижка при землетрясениях имеет высоту обычно порядка 50 см, но по площади огромна – десятки квадратных километров. Поэтому возбуждаемые волны цунами имеют маленькую высоту и очень большой запас энергии. Далеко не каждое подводное землетрясение сопровождается цунами. Но если очаг землетрясения лежит неглубоко под дном океана
(10–60 км), а землетрясение обладает большой силой (более 7–8 по шкале Рихтера), то возникновение цунами почти совершенно неизбежно.

Причиной возникновения цунами может быть оползень. Цунами такого типа возникают довольно редко. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась в воду с высоты 900 м. Образовалась волна, достигшая на противоположном берегу бухты высоты 600 м.

Другим источником цунами могут служить вулканические извержения. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются кальдеры, которые моментально заполняются водой, в результате чего возникает длинная и невысокая волна.

В открытом океане волны цунами распространяются со скоростью υ=√gH, где g – ускорение свободного падения, а H – глубина океана (так называемое приближение мелкой воды, когда длина волны существенно больше глубины). При средней глубине 4000 м скорость распространения получается 200 м/с, или 720 км/ч. В открытом океане высота волны редко превышает один метр, а длина волны (расстояние между гребнями) достигает сотен километров, и поэтому волна неопасна для судоходства. При выходе волн на мелководье, вблизи береговой черты, их скорость и длина уменьшаются, а высота увеличивается. У берега высота цунами может достигать нескольких десятков метров. Наиболее высокие волны, до
30–40 метров, образуются у крутых берегов, в клинообразных бухтах и во всех местах, где может произойти фокусировка. Районы побережья с закрытыми бухтами являются менее опасными. Цунами обычно проявляется как серия волн, а так как волны длинные, то между приходами волн может проходить более часа.

Как изменяется скорость, высота и длина волны цунами вблизи береговой черты?

1) и скорость, и высота, и длина волны увеличиваются

2) скорость и длина волны увеличиваются, высота уменьшается

3) скорость и длина волна уменьшаются, высота увеличивается

4) длина волны уменьшается, скорость и высота увеличиваются

Конец формы

Начало формы

Чему равен период колебаний поверхности воды в волне цунами, если длина волны составляет 1 км при скорости распространения 720 км/ч?

1) 200 с 2) 0,005 с

3) 5 с 4) 0,2 с

Конец формы

Начало формы

Что может быть причиной возникновения волн цунами?

А. Землетрясения

Б. Оползни

В. Вулканические извержения

1) только А 2) только В

3) только А и В 4) А, Б и В

Конец формы

Слух человека

Самый низкий тон, воспринимаемый человеком с нормальным слухом, имеет частоту около 20 Гц. Верхний предел слухового восприятия сильно различается у разных людей. Особое значение здесь имеет возраст. В восемнадцать лет при безупречном слухе можно услышать звук до 20 кГц, но в среднем границы слышимости для любого возраста лежат в интервале 18 — 16 кГц. С возрастом чувствительность человеческого уха к высокочастотным звукам постепенно падает. На рисунке приведен график зависимости уровня восприятия звука от частоты для людей разного возраста.

Восприятие звуков различной громкости и частоты в 20-летнем и 60-летнем возрасте

Чувствительность уха к звуковым колебаниям различных частот неодинакова. Оно особенно тонко реагирует на колебания средних частот (в области 4000 Гц). По мере уменьшения или увеличения частоты относительно среднего диапазона острота слуха постепенно снижается.

Человеческое ухо не только различает звуки и их источники; оба уха, работая вместе, способны довольно точно определять направление распространения звука. Поскольку уши расположены с противоположных сторон головы, звуковые волны от источника звука достигают их не одновременно и воздействуют с разным давлением. За счет даже этой ничтожной разницы во времени и давлении мозг довольно точно определяет направление источника звука.

Имеются два источника звуковой волны:

А. Звуковая волна частотой 100 Гц и громкостью 10 дБ.

Б. Звуковая волна частотой 1 кГц и громкостью 20 дБ.

Используя график, представленный на рисунке, определите, звук какого источника будет услышан человеком.

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

Конец формы

Начало формы

Какие утверждения, сделанные на основании графика (см. рисунок), справедливы?

А.С возрастом чувствительность человеческого слуха к высокочастотным звукам постепенно падает.

Б.Слух гораздо чувствительнее к звукам в области 4 кГц, чем к более низким или более высоким звукам.

1) только А 2) только Б

3) и А, и Б 4) ни А, ни Б

Флотация

Чистая руда почти никогда не встречается в природе. Почти всегда полезное ископаемое перемешано с «пустой», ненужной горной породой. Процесс отделения пустой породы от полезного ископаемого называют обогащением руды.

Одним из способов обогащения руды, основанным на явлении смачивания, является флотация. Сущность флотации состоит в следующем. Раздробленная в мелкий порошок руда взбалтывается в воде. Туда же добавляется небольшое количество вещества, обладающего способностью смачивать одну из подлежащих разделению частей, например крупицы полезного ископаемого, и не смачивать другую часть – крупицы пустой породы. Кроме того, добавляемое вещество не должно растворяться в воде. При этом вода не будет смачивать поверхность крупицы руды, покрытую слоем добавки. Обычно применяют какое-нибудь масло. В результате перемешивания крупицы полезного ископаемого обволакиваются тонкой пленкой масла, а крупицы пустой породы остаются свободными. В получившуюся смесь очень мелкими порциями вдувают воздух. Пузырьки воздуха, пришедшие в соприкосновение с крупицей полезной породы, покрытой слоем масла и потому не смачиваемой водой, прилипают к ней. Это происходит потому, что тонкая пленка воды между пузырьками воздуха и не смачиваемой ею поверхностью крупицы стремится уменьшить свою площадь, подобно капле воды на промасленной бумаге, и обнажает поверхность крупицы.

Крупицы полезной руды с пузырьками воздуха поднимаются вверх, а крупицы пустой породы опускаются вниз. Таким образом, происходит более или менее полное отделение пустой породы и получается концентрат, богатый полезной рудой.

Можно ли, используя флотацию, сделать так, чтобы пустая порода всплывала вверх, а крупицы руды оседали на дно? Ответ поясните.

Конец формы

Начало формы

Что такое флотация?

1) способ обогащения руды, в основе которого лежит явление плавания тел

2) плавание тел в жидкости

3) способ обогащения руды, в основе которого лежат явления смачивания и плавания

4) способ получения полезных ископаемых

Конец формы

Начало формы

Почему крупицы полезной руды поднимаются вверх из смеси воды и руды?

1) на крупицы действует выталкивающая сила, меньшая, чем сила тяжести, действующая на крупицы

2) на прилипшие к ним пузырьки действует выталкивающая сила, меньшая, чем сила тяжести, действующая на крупицы

3) на крупицы и прилипшие к ним пузырьки действует выталкивающая сила, равная силе тяжести, действующая на крупицы

4) на них действует сила поверхностного натяжения слоя воды между масляной пленкой и пузырьком воздуха

Сейсмические методы исследования

Механические волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов, называются сейсмическими волнами.

Для исследования землетрясений и внутреннего строения Земли наибольший интерес вызывают два вида сейсмических волн: продольные (волны сжатия) и поперечные. В отличие от продольных волн, поперечные волны не распространяются внутри жидкостей и газов. Скорость этих волн в одном и том же веществе разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн примерно 5 км/с, а скорость продольных волн: 10 км/с.

Распространяясь из очага землетрясения, первыми на сейсмическую станцию приходят продольные волны, а спустя некоторое время – поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Для более точных измерений используют данные нескольких сейсмических станций. Ежегодно на земном шаре регистрируют сотни тысяч землетрясений.

Сейсмические волны используются для исследования глубоких слоёв Земли. Когда сейсмические волны проходят через среду, плотность и состав которой изменяются, то скорости волн также меняются, что проявляется в преломлении волн. В более плотных слоях Земли скорость волн возрастает; соответственно, возрастает угол преломления. Характер преломления сейсмических волн позволяет исследовать плотность и внутреннее строение Земли. Отсутствие поперечных волн, прошедших через центральную область Земли, позволило английскому сейсмологу Олдгему сделать вывод о существовании жидкого ядра Земли.

Сейсмический метод отражённых волн используется для поиска полезных ископаемых (например, месторождений нефти и газа). Этот метод основан на отражении искусственно созданной сейсмической волны на границе пород с разными плотностями. В скважине, пробуренной в исследуемом районе, взрывают небольшой заряд. Возникающая сейсмическая волна распространяется по всем направлениям. Достигнув границ исследуемой породы, волна отражается и возвращается обратно к земной поверхности, где её «ловит» специальный прибор (сейсмоприемник).

Продольная сейсмическая волна может распространяться

1)только в твёрдом теле

2) только в жидкости

3) только в газе

4) в твёрдом теле, жидкости и газе

Конец формы

Начало формы

На рисунке схематически изображено распространение сейсмической волны от очага землетрясения. Какой из слоёв (А или Б) имеет бόльшую плотность? Ответ поясните.

Конец формы

Начало формы

Какое(-ие) утверждение(-я) справедливо(-ы)?

А. Скорость распространения сейсмической волны зависит от плотности и состава среды.

Б. На границе двух сред с разной плотностью сейсмическая волна частично отражается, частично преломляется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *