Солнце красный гигант

masterok


Сейчас в солнечном ядре происходит синтез гелия из водорода, в результате чего с каждой ядерной реакцией небольшое количество массы превращается в чистую энергию, согласно эйнштейновскому E = mc в квадрате.
Но это не может продолжаться вечно, ибо количество топлива в ядре ограничено. Солнце уже потеряло в этом процессе массу, эквивалентную массе Сатурна, а через 5-7 млрд лет полностью израсходует всё горючее в ядре. Раздувшись до красного гиганта, оно в результате сбросит внешние слои, породив планетарную туманность, а его ядро сожмётся и превратится в белого карлика. Для внешнего наблюдателя это будет прекрасный и красочный вид. Вот на первом фото Туманность Кошачий Глаз – великолепный и красочный пример этой возможной судьбы.
Но внутри Солнечной системы это приведёт к катастрофе.

Первое, что нужно знать о красных гигантах – они огромны. Нам кажется, что наше Солнце крупное: 1,4 млн км в поперечнике, с массой в 300 000 раз больше, чем у Земли, однако по сравнению с красным гигантом это ничто. С такой массой наше Солнце вырастет в 100 раз по сравнению с предыдущим размером, поглотив Меркурий и Венеру. Земля, скорее всего, будет вытолкнута дальше, во время роста и потери массы Солнцем, и хотя её и может поглотить звезда, учёные пока спорят о том, выживет она или нет.

Если расчёты верны, Солнце не должно будет поглотить Землю, когда оно раздуется до красного гиганта.
В таком случае Земля и Марс превратятся в обуглившиеся, бесплодные миры. Океаны и атмосферы этих планет вскипят и исчезнут с поверхности, и эти миры станут безвоздушными и горячими, как сегодняшний Меркурий. Эти эффекты будут простираться далеко за пределы орбит внутренних скалистых миров Солнечной системы.
Видите ли, красные гиганты не просто огромны, они также всё ещё разогреты до многих тысяч градусов, а сияют в тысячи раз ярче, чем сегодняшнее Солнце. Большая часть выброшенного материала – по массе составляющего от трети до половины Солнца – останется разогретым до экстремальных температур и дойдёт до внешних краёв нашей Солнечной системы. Астероиды расплавятся, потеряв все летучие компоненты, и от них останутся только скалистые ядра.

В астероидах есть некоторое количество летучих компонентов, и они часто демонстрируют хвосты, приближаясь к Солнцу. Со временем, когда Солнце дорастёт до красного гиганта, эти астероиды расплавятся, потеряют все летучие материалы, и станут либо кучками булыжников, либо расплавленными камнями – в любом случае, став гораздо меньше текущих размеров
Но газовые гиганты будут достаточно массивными, чтобы и дальше удерживать свои газовые одежды, которые, возможно, даже вырастут, когда Солнце войдёт в эту фазу. К примеру, сегодня мы находим на орбите вокруг красных гигантов только газовых гигантов, размером гораздо больше даже Юпитера. Возможно, это результат селекции – и мы видим их потому, что их легче всего увидеть – но, возможно, это результат неизбежного процесса.
Огромные количества материала, покидающего Солнце, будут сталкиваться с гигантскими мирами, обладающими мощными гравитационными полями. Большая часть материала, которая встретится с этими атмосферами, издаст шлепок космических масштабов и увеличит размер и массу этих миров. В результате Юпитер, Сатурн, Уран и Нептун могут оказаться крупнее и массивнее, чем сегодня.


Визуально сразу бросается в глаза большой разрыв между размерами миров земного типа и планет типа Нептуна – и превращение Солнца в красного гиганта лишь увеличит эту разницу. Земля и Марс потеряют атмосферы, а, возможно, и часть поверхности, при этом газовые гиганты вырастут, поглощая больше и больше материи, когда Солнце будет сбрасывать внешнюю оболочку.
Однако Солнце станет таким ярким и горячим, что большая часть внешней Солнечной системы будет полностью уничтожена. У каждого из газовых гигантов есть свои кольца; наиболее известны кольца Сатурна, но у всех наших четырёх гигантов они есть. В основном они состоят из различных льдов – водяного, метанового и замёрзшего углекислого газа. Благодаря экстремальной энергии, выдаваемой Солнцем, эти льды не просто расплавятся – их отдельные молекулы приобретут такую энергию, что их выкинет за пределы Солнечной системы.

Кольца Нептуна, снятые на широкоугольную камеру аппарата Вояджер-2 с большой экспозицией. Можно видеть, насколько они непрерывны. Кольца Нептуна, как и кольца всех газовых гигантов, состоят из летучих ледяных компонентов, и расплавятся, вскипят и сублимируют, когда Солнце превратится в красного гиганта.
То же будет верно для лун, богатых водой, вращающихся вокруг этих миров. Замёрзшая поверхность Европы, под которой находится водяной лёд, полностью выкипит. То же случится и с Энцеладом, у которого испарится практически всё, кроме скалистого ядра с примесью металлов. Практически все луны Юпитера, Сатурна, Урана и Нептуна значительно уменьшатся в размере, их атмосферы выкипят, их внешние слои расплавятся и исчезнут; останутся лишь ядра этих спутников, состоящие из камня и металла. Некоторые луны, полностью состоящие из летучих веществ, могут полностью исчезнуть.
Даже крупнейшие и хорошо известные объекты пояса Койпера не защищены от этой беды. Даже миры, находящиеся на таких огромных расстояниях, как Тритон, Эрида или Плутон будут получать в четыре раза больше энергии на единицу поверхности, чем сегодня получает Земля. Их атмосферы и поверхности, ныне покрытые различными типами льда, и, возможно, содержащие подповерхностные океаны, также полностью испарятся. Когда Солнце станет красным гигантом, и внутренние миры превратятся в обгорелые останки или будут поглощены Солнцем, миры типа Плутон не станут потенциально обитаемыми планетами: они сгорят. Они превратятся в голые ядра из камня и металла, и станут похожими на сегодняшний Меркурий.

Геологическая структура под поверхностью равнины Спутника. Возможно, что на Плутоне под тонкой корой находится океан жидкой воды. Когда Солнце станет красным гигантом, все внешние слои сублимируются и выкипят, оставив за собой лишь ядро из камня и металла.
Несколько десятков или сотен миллионов лет будет надежда на наличие более приемлемых условий на поясе Койпера, на расстоянии в 80-100 раз большем, чем расстояние от Солнца до Земли. На этот небольшой, по космическим меркам, промежуток времени объекты на этом расстоянии будут получать примерно столько же солнечного света, сколько сегодня получает Земля. Однако для обитаемости миру нужно нечто большее, чем солнечный свет; нужно иметь достаточно массы, подходящий размер и соответствующие ингредиенты. Луна и Земля очень сильно отличаются по обитаемости, несмотря на получение практически идентичного количества солнечной энергии на единицу площади.


Орбиты известных седноидов, вместе с предполагаемой Девятой планетой. Даже когда Солнце станет красным гигантом, Девятая планета – чьё существование и так спорно – не дойдёт до температуры, достаточной для того, чтобы стать потенциально обитаемой. Другие миры пояса Койпера, даже те, что окажутся на нужном расстоянии, будут слишком мелкими с этой точки зрения.
Однако даже гипотетическая Девятая планета окажется слишком далёкой для того, чтобы стать потенциально обитаемой, а всё, что окажется на нужном расстоянии, будет слишком мелким для того, чтобы там смогла существовать жизнь. Солнечная система станет расплавленной катастрофой, где останутся только голые ядра планет, лун и других объектов. Газовые гиганты, возможно, разбухнут и вырастут, растеряют свои кольца и многие спутники, но всё остальное станет не более чем кусками мусора, богатыми металлом. Если вы надеетесь, что замёрзшие внешние миры Солнечной системы, наконец, получат свой шанс блеснуть, вы будете разочарованы. Когда Солнце дойдёт до конца своей жизни, эти миры, как и наши надежды на выживание, столкнутся с тем, что всё самое важное расплавится и исчезнет.

Земля может пережить Солнце?

Автор Ирина Шлионская 22.09.2011 07:00 Наука » Экология » Космос

Участники недавней конференции «Экстремальные солнечные системы», посвященной рождению и развитию планет, пришли к выводу, что превращение Солнца в красный гигант, а затем в белый карлик вовсе не обязательно приведет к гибели Земли. Есть шанс, что она просто будет отброшена на дальнюю орбиту, что позволит ей благополучно пережить катаклизм.

Фото: AP

Как известно, каждая звезда проходит через разные этапы эволюции и в конце концов «умирает». Например, массивные звезды (по массе значительно превышающие Солнце) в конце своего эволюционного пути взрываются, выбрасывая большинство своих планет в космическое пространство. Но такие звезды, как Солнце, сначала превращаются в красных гигантов, поглощая планеты, вращающиеся вокруг них. Наше Солнце тоже не является исключением.

Астрофизики пришли к выводу, что через пять миллиардов лет оно сбросит свои водородные оболочки и превратится в красный гигант, который постепенно «съежится» до белого карлика. Этот процесс был недавно смоделирован на компьютере исследователями из Кембриджского университета.

По мере того как Солнце будет терять массу, уверяют они, будет уменьшаться сила его гравитационного притяжения. Это приведет к тому, что объекты Солнечной системы сместятся со своих орбит. Но, скорее всего, большинство планет, в том числе и Земля, сгорят еще на стадии красного гиганта. Хотя так ли уж это неизбежно?

Смерть Солнца будет ознаменована салютом

Как утверждают исследователи, судьба Земли во многом зависит от того, каким образом Солнце будет сбрасывать лишнее вещество. Например, согласно одному из сценариев, наша планета, в отличие от более близких к Солнцу Меркурия и Венеры, при этом может быть отброшена на более удаленную орбиту, так что разрастание звезды не окажет на нее столь катастрофического влияния, как ожидалось.

Однако даже при таком оптимистичном варианте развития событий нет гарантий, что Земля все-таки уцелеет, заявила на конференции Ева Виллавер из Автономного Университета Мадрида. Во-первых, гравитационные силы будут тянуть Землю к гиганту, и она может сгореть под его лучами. «Мы не знаем, какой из этих процессов пересилит, — признается Ева Виллавер. — Это очень коварный вопрос». Во-вторых, говорит Борис Гансик из британского Университета Уорвика, если Землю отбросит на орбиту с большим радиусом, то не исключено, что она столкнется с Марсом, что приведет к разрушению обеих планет, которые просто распадутся на миллионы обломков. В-третьих, Земля может попасть в зону, непригодную для обитания.

Фото: AP

Но, если ничего этого не произойдет, то есть шансы на возрождение жизни на Земле. Разумеется, нечего надеяться, что земная биосфера останется такой же, как прежде — скорее всего, большая часть живых существ все-таки погибнет. Возможно, что и человечество, заранее осведомленное о катаклизме, к тому времени почти наверняка переберется в более безопасные уголки Вселенной. И все же жизнь на нашей планете может родиться заново. Да и не исключено, что ряд видов бактерий экстремалов, живущих глубоко в недрах Земли, спокойно «пересидят» данную катастрофу.

Эрик Агол из университета Вашингтона, занимаясь исследованиями белых карликов — остывающих звезд большой плотности — пришел к выводу, что на расстоянии от 0,005 до 0,02 астрономической единицы от этих звезд вращаются планеты, климатические условия на которых теоретически могут поддерживать существование живых организмов. В частности, там наличествуют подходящие температурные условия и молекулы воды.

Несмотря на то, что в недрах белых карликов не идут реакции термоядерного синтеза, сохраненного ими тепла достаточно для того, чтобы там в течение трех миллиардов лет могла существовать жизнь. Более того — этому уже найдены косвенные доказательства. Так, исследования белого карлика GD61, обладающего избытком атмосферного кислорода, позволили выдвинуть предположение о том, что на него когда-то упали астероиды, богатые водой: они могли быть обломками крупного небесного тела, наподобие Земли. Да и то, что вокруг некоторых белых карликов «плавают» каменистые обломки, подтверждает эту версию.

Что будет с Землей, когда Солнце станет красным гигантом?

Когда Солнце станет красным гигантом, Земля скорее всего не будет поглощена им, но на планете станет очень жарко. Авторы и права: Wikimedia Commons user Fsgregs.

С самого начала человеческой цивилизации, люди понимали, что Солнце является основополагающей частью жизни, в том виде в котором мы её знаем. Солнце имело огромное значение для бесчисленных мифологических историй и легенд по всему миру, и со временем мы поняли, что Солнце существовало задолго до нас, и будет существовать ещё долго после того, как наша цивилизация исчезнет. Сформировавшись примерно 4,6 миллиарда лет назад, наше Солнце начало свою жизнь за 40 миллионов лет до того, как образовалась Земля.

С тех пор ядерный синтез в ядре Солнца давал возможность развиваться белковым формам жизни на нашей планете. И этот процесс длится уже 4,5 миллиарда лет и продлится ещё примерно 1 миллиард лет, после чего Солнце истощив свои запасы водорода и гелия претерпит некоторые серьёзные изменения.

Ведущая теория, описывающая то, как именно наше Солнце и Солнечная система сформировались известна как “теория туманности”. Согласно ей Солнце и все планеты образовались из гигантского облака молекулярного газа и пыли, которое на определённом этапе своего существования пережило гравитационный коллапс. Этот коллапс мог произойти в результате, например, прохождения рядом звезды или ударной волны, вызванной взрывом сверхновой, что и запустило процесс, приведший к рождению нашего Солнца.

В последние 4,57 миллиарда лет (как, собственно и сейчас) внутри Солнца происходил процесс превращения водорода в гелий. Кроме изменения свойств вещества, этот процесс также приводил к образованию огромного количества энергии. Как известно каждую секунду, 600 миллионов тонн вещества внутри Солнца преобразуются в солнечное излучение, энергия которого составляет примерно 4*1027 Вт. Естественно, этот процесс не может продолжаться вечно, так как он привязан к количеству водорода. С течением времени всё большая и большая часть водорода будет превращаться в гелий, ядро будет уменьшаться тем самым испытывая всё большее и большее давление.

Увеличение давления в ядре приведёт к увеличению скорости синтеза водорода. По сути, это означает, что, Солнце расходует водород с постоянным ускорением. К настоящему времени это уже привело к тому, что его светимость возрастает на 1% каждые 100 миллионов лет, а за последние 4,5 миллиарда лет светимость Солнца изменилась на 30%.

Когда Солнце станет красным гигантом.

Примерно через 1,1 миллиарда лет, Солнце будет на 10% ярче, чем сегодня. Это увеличение яркости также будет означать увеличение тепловой энергии, которую поглощает атмосфера Земли. В итоге такие метаморфозы приведут к возникновению парникового эффекта, который будет очень похож на тот, который мы видим на Венере сегодня.

Через 3,5 миллиарда лет, Солнце станет на 40% ярче, что приведёт к испарению океанов и плавлению ледяных шапок, а водяные пары в атмосфере будут выброшены в космическое пространство. В таких условиях, жизнь, как мы её знаем, перестанет существовать в любом месте на поверхности, и планета Земля превратится в жаркий и сухой мир подобный Венере.

Через 5,4 миллиарда лет, Солнце перейдёт в стадию красного гиганта и начнёт стремительно увеличиваться в размерах. Подсчитано, что расширяющееся Солнце сможет охватить орбиты Меркурия, Венеры, и, возможно, даже Земли. Тем не менее, астрономы отмечают, что, параллельно с расширением Солнца, орбита нашей планеты должна также измениться.

Когда Солнце достигнет этой поздней стадии своей эволюции, оно потеряет огромное количество своей массы, излучая мощные звёздные ветра. В результате орбиты планет будут увеличиваться, двигаясь по спирали. Получается имеется небольшой шанс, что Земля будет пригодной для жизни?

К. -П Шрёдер (K.-P Schroder) и Роберт Кэннон Смит (Robert Cannon Smith) решили подробнее изучить этот вопрос. В своей научно-исследовательской работе, озаглавленной «Отдалённое будущее Солнца и Земли», которая появилась в Monthly Notices of the Royal Astronomical Society, они опубликовали расчёты основанные на самых современных моделях звёздной эволюции.

Это изображение “Хаббла” показывает нам планетарную туманность NGC 3918. Авторы и права: NASA / ESA / Hubble.

По словам Шрёдера и Смита, когда Солнце станет красным гигантом в возрасте 7,59 миллиардов лет, оно начнёт очень быстро терять массу, однако его радиус к тому времени достигнет своего наибольшего значения. В этот период масса Солнца будет составлять всего 67% от современной, а радиус будет в 256 раз больше, чем текущий. Когда Солнце начнет расширяться, оно поглотит всю внутреннюю часть Солнечной системы всего за 5 миллионов лет. И это не очень хорошая новость. По словам Шрёдера и Смита несмотря на то, что земная орбита будет увеличиваться вплоть до 1,5 а.е., расширяющееся Солнце все равно поглотит её, прежде чем оно достигнет финала стадии красного гиганта.

Таким образом мы можем с уверенностью сказать, что человечеству придется покинуть свою колыбель задолго до того, как она будет поглощена Солнцем. К тому же учитывая тот факт, что мы имеем дело с временными шкалами, которые находятся далеко за пределами нашего понимания мы не можем быть уверены, что какие-либо другие катастрофические события не погубят нашу цивилизацию.

Побочным эффектом превращения Солнца в красного гиганта будет перенос границ обитаемой зоны, что изменит Солнечную систему. В то время как Земля, находящаяся к тому времени в 1,5 а.е., больше не будет находиться в пределах обитаемой зоны Солнца, большая часть внешней Солнечной системы – окажется именно там. Эта новая обитаемая зона будет простираться от 49,4 до 71,4 а.е., то есть в поясе Койпера – что означает, что сегодняшние ледяные миры будут таять, а жидкую воду можно будет найти далеко за пределами орбиты Плутона.

Возможно, Эрис будет нашим новым домом, карликовая планета Плутон будет новой Венерой, а Хаумеа и Макемаке станут внешней частью солнечной системы. Но, пожалуй, самый интересный вопрос – это: будем ли мы всё ещё жить здесь или всё же сможем колонизировать другие планеты?

Будущее Земли

Выжженная Земля после перехода Солнца в фазу красного гиганта в представлении художника

Бу́дущее Земли́ будет определяться рядом факторов: увеличением светимости Солнца, потерей тепловой энергии ядра Земли, возмущениями со стороны других тел Солнечной системы, тектоникой плит и биохимией на поверхности. Согласно теории Миланковича, планета будет по-прежнему подвергаться циклам оледенения вследствие изменения эксцентриситета орбиты Земли, наклона оси вращения и прецессии оси. В результате продолжающегося суперконтинентального цикла тектоника плит, вероятно, приведёт к образованию суперконтинента через 250—350 млн лет, а в течение следующих 1,5—4,5 миллиардов лет наклон оси Земли может начать испытывать хаотические изменения с отклонением вплоть до 90°.

Через 1—3 миллиарда лет непрерывное увеличение солнечного излучения, вызванное накоплением гелия в ядре Солнца, приведёт к испарению океанов и прекращению дрейфа континентов. Через 4 миллиарда лет увеличение температуры у поверхности Земли станет причиной стремительного парникового эффекта. К тому времени бо́льшая часть жизни (если не вся) на поверхности Земли вымрет(Fishbaugh et al., Lognonné, p. 114). Наиболее вероятной дальнейшей судьбой планеты является поглощение её Солнцем приблизительно через 7,5 миллиардов лет, после того как оно станет красным гигантом и расширится до пересечения с орбитой Земли.

Влияние человека

Люди играют ключевую роль в биосфере, имея многочисленную популяцию, доминирующую над различными экосистемами Земли. Это привело к массовому исчезновению (биотический кризис) других видов в ходе нынешней геологической эпохи, известному как голоценовое вымирание (англ.). Оно является результатом разрушения среды обитания, широкого распространения инвазивных видов, охоты и изменения климата. При нынешних темпах около 30 % видов находятся под угрозой вымирания в ближайшие сто лет. К настоящему моменту деятельность человека оказала значительное влияние на всю планету:

  • в результате человеческой деятельности было изменено более трети поверхности суши;
  • люди используют около 20 % мировой первичной продукции экосистем;
  • концентрация углекислого газа в атмосфере Земли увеличилась почти на 30 % с начала промышленной революции.

Предполагается, что последствия постоянного биотического кризиса продлятся по крайней мере ещё пять миллионов лет (Reaka-Kudla, Wilson & Wilson, 1997, pp. 132–133). Это может привести к снижению биоразнообразия и гомогенизации биоты, сопровождаемым распространением более приспосабливаемых видов, таких как вредители и сорняки. Могут также появиться новые виды. В частности таксоны, процветающие в доминируемых человеком экосистемах, могут быстро развиться во множество новых видов. Микроорганизмы, вероятно, извлекут выгоду из увеличения обогащённых питательным веществом экологических ниш. Однако никакие новые разновидности существующих больших позвоночных животных, вероятно, не возникнут, и пищевые цепи будут сокращены.

Орбита и вращение

Гравитационные возмущения (англ.) других тел могут изменить орбиту Земли, а также наклон оси её вращения. Это в свою очередь может привести к значительному изменению климата на планете.

Оледенение

В истории Земли были циклические периоды оледенения, во время которых ледяной покров распространялся к значительно более низким широтам, чем сейчас. Теория Миланковича гласит, что оледенение происходит вследствие астрономических факторов в сочетании с климатическими механизмами обратной связи и тектоникой плит. Каждый из этих эффектов происходит циклически. Например, эксцентриситет орбиты изменяется циклически со значениями в пределах от 0,0007 до 0,0658. В настоящий момент он равен 0,017. За полный цикл общее количество солнечного излучения, попадающего на Землю, меняется максимум на 0,2 %.

В настоящее время Земля находится в межледниковой эпохе, которая, как предполагается, должна завершиться через 25 тысяч лет. Нынешние темпы выбросов в атмосферу человечеством углекислого газа могут задержать начало следующего периода оледенения по крайней мере на 50 000—130 000 лет. Однако период глобального потепления конечной длительности (основанный на предположении, что ископаемое топливо будет исчерпано к 2200 году) будет влиять на цикл оледенения только 5 000 лет. Таким образом, короткий период глобального потепления, вызванный выбросами парниковых газов в течение нескольких столетий, будет иметь ограниченное воздействие в долгосрочной перспективе.

Наклонение

Приливная выпуклость смещается вперёд с линии, соединяющей центры масс Земли и Луны. В результате на Луну действует момент силы, ускоряющий её обращение по орбите и в то же время замедляющий вращение Земли.

Приливное ускорение Луны замедляет скорость вращения Земли и увеличивает расстояние между Землёй и Луной. Другие эффекты, которые могут рассеять энергию вращения Земли — это трение между ядром и мантией, потоки в атмосфере, конвекция в мантии и климатические изменения, которые могут увеличить или уменьшить количество льда на полюсах. В совокупности эти эффекты, как предполагается, увеличат продолжительность дня более чем на 1,5 часа в течение ближайших 250 миллионов лет, а также увеличат наклон оси на полградуса. Расстояние до Луны увеличится примерно на 1,5 RЗемли в течение этого же периода.

На основании компьютерных моделей считается, что наличие Луны позволяет стабилизировать наклон оси Земли и тем самым избежать резких изменений климата. Эта стабильность достигается из-за того, что Луна увеличивает скорость прецессии оси вращения Земли, что позволяет избежать резонансов между прецессией вращения и прецессией частот восходящего узла орбиты планеты. Однако, поскольку большая полуось орбиты Луны продолжит увеличиваться в будущем, то этот стабилизирующий эффект со временем уменьшится. В какой-то момент времени эффекты возмущения, вероятно, вызовут хаотические изменения наклона Земли, и наклон оси может измениться вплоть до 90° к плоскости орбиты. Предполагается, что это произойдет через 1,5—4,5 млрд лет, хотя точное время неизвестно.

Сильное наклонение, вероятно, приведёт к резким переменам в климате и уничтожению жизни на планете. Когда наклон оси Земли достигнет 54°, экватор будет получать меньше излучения от Солнца, чем полюса. Планета может оставаться в положении с наклоном от 60° до 90° в течение 10 миллионов лет.

Тектоника плит

Пангея — последний существовавший суперконтинент

Согласно теории тектоники плит континенты Земли движутся по поверхности со скоростью несколько сантиметров в год. Это будет происходить и в дальнейшем, в результате чего плиты будут продолжать двигаться и сталкиваться. Континентальному дрейфу способствуют два фактора: генерация энергии внутри планеты и наличие гидросферы. При исчезновении любого из этих факторов дрейф континентов прекратится. Производство тепла посредством радиогенных процессов достаточно для поддержания конвекции в мантии и субдукции плит, по крайней мере, в течение следующего 1,1 миллиарда лет.

В настоящее время континенты Северная и Южная Америки движутся к западу от Африки и Европы. Исследователи рассматривают несколько сценариев развития событий в будущем. Эти геодинамические модели можно отличить по субдукции потока, в котором океаническая кора движется под континент. В интроверсной модели более молодой, внутренний, Атлантический океан подвергается субдукции и текущее движение Северной и Южной Америки разворачивается на противоположное направление. В экстраверсионной модели более старый, внешний, Тихий океан подвергается субдукции, поэтому Северная и Южная Америки движутся в сторону Восточной Азии.

По мере улучшения понимания геодинамики эти модели будут пересматриваться. Например, в 2008 году для прогнозирования было использовано компьютерное моделирование, в результате которого было определено, что будет происходить преобразование конвекции мантии и формироваться суперконтинент вокруг Антарктиды.

Независимо от результатов континентального движения, продолжающийся процесс субдукции станет причиной перемещения воды в мантию. Геофизическая модель даёт оценку, что спустя миллиард лет 27 % от текущей массы океана будет утрачено. Если этот процесс будет продолжаться в неизменном виде в будущем, то субдукция достигнет точки стабильности после того, как 65 % текущей массы океана будет поглощено.

Интроверсия

Кристофер Скотезе и его коллеги в рамках проекта Paleomap спрогнозировали движение плит на несколько сотен миллионов лет. В их сценарии через 50 миллионов лет Средиземное море может исчезнуть, а столкновение Европы и Африки создаст длинную горную цепь, тянущуюся вплоть до Персидского залива. Австралия сольётся с Индонезией, а Нижняя Калифорния будет скользить на север вдоль побережья. Могут появиться новые зоны субдукции у восточного побережья Северной и Южной Америки, а вдоль их берегов сформируются горные цепи. На юге планеты перемещение Антарктиды к северу станет причиной таяния всего ледникового покрова. Это, наряду с таянием ледникового покрова Гренландии, повысит средний уровень океана на 90 метров. Затопление континентов приведёт к изменениям климата.

По мере реализации этого сценария через 100 миллионов лет распространение континентов достигнет своей максимальной точки, и они начнут сливаться. Через 250 миллионов лет Северная Америка столкнётся с Африкой, а Южная Америка будет обёрнута вокруг южной оконечности Африки. Результатом будет формирование нового суперконтинента (иногда называемого Пангея Ультима) и океана, простирающегося на половине планеты. Антарктический континент полностью изменит направления и возвратится к Южному полюсу с образованием нового ледникового покроваWard & Brownlee, 2003, pp. 92–96.

Экстраверсия

Первым учёным, экстраполировавшим текущие движения континентов, был канадский геолог Пол Ф. Хоффман из Гарвардского университета. В 1992 году Хоффман предположил, что континенты Северная и Южная Америки продолжат движение через Тихий океан, разворачиваясь у Дальнего Востока до тех пор, пока не начнут сливаться с Азией. Он окрестил образовавшийся суперконтинент Амазией. Позднее, в 1990-х гг. Рой Ливермор рассчитал подобный сценарий. Он предположил, что Антарктида начнёт перемещаться на север, а восток Африки и Мадагаскар будут двигаться через Индийский океан до столкновения с Азией.

В экстраверсной модели смыкание Тихого океана будет закончено через 350 миллионов лет. Это ознаменует завершение текущего суперконтинентального цикла, в котором континенты разделяются, а затем возвращаются друг к другу примерно каждые 400—500 миллионов лет. После создания суперконтинента тектоника плит может вступить в период бездействия, поскольку скорость субдукции падает на порядок. Этот период стабильности может привести к увеличению температуры мантии на 30—100K каждые 100 миллионов лет, что является минимальным временем жизни прошлых суперконтинентов. И, как следствие, может возрасти вулканическая активность.

Ортоверсия

В 2012 году группа геологов под руководством Росса Митчелла (Ross Mitchell) из Йельского университета предложила новую гипотезу движения континентов. При построении своей модели учёные опирались на данные о дрейфе магнитных полюсов, которые позволяют вычислить направление движения литосферных плит. Согласно исследованию, материки в будущем сольются в единый континент в районе Северного Ледовитого океана и центром нового суперконтинента станет Северная Америка. По мнению Митчелла и его коллег, Азия будет двигаться в сторону Северной Америки, с которой она впоследствии соединится. Также к ним примкнёт современная Гренландия, которая станет частью суперконтинента.

Суперконтинент

Формирование суперконтинента может существенно повлиять на окружающую среду. Столкновение плит приведёт к формированию гор, тем самым значительно меняя погодные условия. Уровень моря может упасть вследствие увеличения оледенения. Скорость поверхностной эрозии может возрасти, в результате чего увеличится скорость, с которой поглощается органический материал. Формирование суперконтинента может привести к снижению глобальной температуры и увеличению концентрации атмосферного кислорода. Эти изменения могут привести к более быстрой биологической эволюции, поскольку появятся новые ниши. Это, в свою очередь, может повлиять на климат и привести к дальнейшему понижению температуры.

Образование суперконтинента изолирует мантию. Поток тепла будет сконцентрирован, приводя к вулканизму и заполнению больших площадей базальтом. Далее будут формироваться трещины, и суперконтинент разделится ещё раз. Затем планета может испытать период потепления, как это произошло во время мелового периода.

Эволюция Солнца

См. также: Звёздная эволюция и Формирование и эволюция Солнечной системы

Энергия, генерируемая Солнцем, основана на термоядерном синтезе водорода в гелий. Эта реакция проходит в ядре звезды посредством протон-протонного цикла. Поскольку в ядре Солнца нет конвекции, процесс синтеза приводит к устойчивому накоплению гелия. Температура в ядре Солнца является слишком низкой для ядерного синтеза атомов гелия в тройной гелиевой реакции, так что эти атомы не способствуют чистой генерации энергии, которая необходима для поддержания гидростатического равновесия Солнца.

В настоящее время почти половина запаса водорода в ядре израсходована, а остальная часть состоит преимущественно из гелия. Для компенсации неуклонно снижающегося числа атомов водорода на единицу массы, температура ядра Солнца постепенно увеличивается посредством повышения давления. Это стало причиной того, что остальной водород подвергается синтезу более быстрыми темпами, тем самым производя энергию, необходимую для поддержания равновесия. Результатом становится постоянное увеличение выхода энергии Солнца. Это увеличение может быть аппроксимировано формулой:

L ( t ) = − 1 L s {\displaystyle L(t)=\left^{-1}L_{s}},

где L(t) — светимость Солнца в момент времени t, t — время жизни Солнца, для которого вычисляется светимость, ts — время жизни Солнца в настоящий момент (4,57 млрд лет), Ls — текущая светимость Солнца.

Когда Солнце впервые вышло на главную последовательность, оно излучало только 70 % от текущей светимости, которая затем увеличивалась почти линейно на 1 % каждые 110 миллионов лет. Таким образом, через 3 миллиарда лет светимость Солнца, как предполагается, будет на 33 % больше. Водородное топливо в ядре будет в итоге исчерпано через 5 миллиардов лет, когда светимость Солнца будет на 67 % больше, чем сейчас. После этого Солнце продолжит сжигать водород в оболочке, окружающей её ядро, пока увеличение яркости не достигнет 121 % от текущего значения. Это ознаменует конец существования Солнца на главной последовательности, и после этого оно начнёт эволюционировать в красный гигант.

Воздействие на климат

По мере того как будет возрастать глобальная температура Земли вследствие роста светимости Солнца, будет также возрастать скорость выветривания силикатных минералов. Это, в свою очередь, приведёт к снижению уровня углекислого газа в атмосфере. В течение следующих 600 миллионов лет концентрация CO2 упадёт ниже критического порога (около 50 частей на миллион), необходимого для поддержания C3-фотосинтеза. На тот момент деревья и леса в их нынешней форме не смогут существовать. Однако C4-фотосинтез может продолжаться при гораздо более низких концентрациях, вплоть до 10 частей на миллион. Таким образом, растения, использующие C4-фотосинтез, смогут существовать по меньшей мере в течение 0,8 миллиарда лет, а возможно и 1,2 миллиарда лет, после чего рост температуры сделает биосферу нежизнеспособной. В настоящее время C4-растения составляют около 5 % растительной биомассы Земли и 1 % от известных видов растений. Например, около 50 % всех видов трав (злаки) используют C4-фотосинтетические реакции, так же как и многие виды амарантовых.

Когда уровень углекислого газа упадёт до предела, при котором фотосинтез едва устойчив, доля диоксида углерода в атмосфере снова начнёт возрастать вследствие тектонической деятельности и жизни животных. Это позволит растительности вновь развиваться. Однако долгосрочная перспектива для растительной жизни на Земле — это полное вымирание, поскольку бо́льшая часть оставшегося в атмосфере углерода окажется связанным в Земле. Некоторые микроорганизмы способны к фотосинтезу при концентрации CO2 в несколько частей на миллион, поэтому эти формы жизни, вероятно, исчезнут только из-за повышения температуры и потери биосферы.

В своей работе «Жизнь и смерть планеты Земля», авторы Питер Д. Уорд и Доналд Браунли утверждают, что некоторые формы животной жизни могут продолжить существование даже после того как бо́льшая часть растительной жизни на Земле исчезнет. Первоначально, некоторые насекомые, ящерицы, птицы и мелкие млекопитающие могут продолжить существование вместе с морской жизнью. Однако они считают, что без кислорода, пополняемого растительной жизнью, животные, вероятно, вымрут от удушья в течение нескольких миллионов лет. Даже если в атмосфере останется достаточное количество кислорода вследствие живучести той или иной формы фотосинтеза, устойчивый рост глобальной температуры может привести к постепенной утрате биоразнообразия. Бо́льшая часть поверхности станет бесплодной пустыней, и жизнь в первую очередь должна остаться в океане.

Эпоха без океана

Как только солнечная светимость станет на 10 % выше текущего значения, средняя глобальная температура поверхности достигнет 320 К (47 °С; 116 °F). Атмосфера станет «влажной парниковой» и приведёт к безудержному испарению океанов. Модели будущего Земли показывают, что в тот момент стратосфера будет содержать повышенный уровень воды. Молекулы воды будут разрушаться солнечным ультрафиолетовым излучением посредством фотодиссоциации, что позволит водороду покидать атмосферу. Конечным результатом будет исчезновение морской воды по всей Земле через 1,1 миллиарда лет.

Атмосфера Венеры находится в состоянии «суперпарник»

В эту безокеанскую эру на поверхности по-прежнему будут водные бассейны, поскольку вода непрерывно будет высвобождаться из глубокой коры и мантии. Некоторые запасы воды могут быть сохранены на полюсах и даже могут случаться редкие ливни, но большая часть планеты будет сухой пустыней. Тем не менее, даже в этих засушливых условиях планета может сохранить некоторую микробную и, возможно, даже многоклеточную жизнь. Что произойдёт дальше — зависит от уровня тектонической активности. Устойчивый выход диоксида углерода из-за извержений вулканов в конечном счёте может привести к переходу атмосферы в состояние «суперпарник», как сейчас на Венере. Но без поверхностных вод, тектоника плит, вероятно, остановится и большинство карбонатов будет оставаться в земле.

Потеря океанов может быть отсрочена на 2 миллиарда лет, если уменьшится общее атмосферное давление. Более низкое атмосферное давление уменьшило бы парниковый эффект, тем самым понизив поверхностную температуру. Это может произойти, если природные процессы удалят азот из атмосферы. Исследования органических отложений показали, что по меньшей мере 100 кПа (1 бар) азота было удалено из атмосферы за последние четыре миллиарда лет. Если его выпустить обратно, то это фактически удвоит текущее атмосферное давление. Такая скорость изъятия была бы достаточной для борьбы с последствиями увеличения светимости Солнца в течение следующих двух миллиардов лет. Однако, помимо этого, в нижних слоях атмосферы количество воды вырастет до 40 % и начнётся влажный парниковый эффект.

Через 2,8 миллиардов лет, средняя глобальная температура поверхности достигнет 422 К (149 °С; 300 °F) и даже на полюсах планеты. Если парниковый эффект не произойдёт ранее, то в конечном счёте это явление будет иметь место через 3—4 миллиарда лет, когда светимость Солнца станет на 35—40 % больше, чем её текущее значение. Атмосфера нагреется, и поверхностная температура поднимется до 1600 K (1330 °C; 2420 °F), что сможет расплавить горные породы. Однако большая часть атмосферы будет сохранена, пока Солнце не вступит в стадию красного гиганта.

Стадия красного гиганта

Текущий размер Солнца по сравнению с предполагаемым размером в фазе красного гигантаВид на Солнце с расплавленной поверхности Земли через 6 млрд лет в представлении художника

Как только Солнце вместо сжигания в ядре водорода перейдёт к сжиганию водорода вокруг оболочки, ядро начнёт сжиматься, а внешняя оболочка начнёт расширяться. Полная светимость будет неуклонно возрастать в течение следующих миллиардов лет, пока не увеличится в 2 730 раз от текущей светимости в возрасте 12,167 миллиардов лет. Большая часть атмосферы Земли будет потеряна в космосе, что может быть похожа на нынешнюю планету COROT-7b и представлять собой сгусток лавы на дневной стороне, а температура на поверхности раскалится до 2400 K (2130 °С; 3860 °F). Во время этой фазы Солнце будет терять массу, причём около 33 % от его общей массы потеряет посредством солнечного ветра. Потеря массы будет означать, что орбиты планет будут расширяться. Орбитальное расстояние Земли увеличится более чем на 150 % от его текущего значения.

Самая быстрая часть расширения Солнца в красный гигант произойдёт на заключительном этапе, когда Солнцу будет приблизительно 12 миллиардов лет. Вполне вероятно, что, расширившись, Солнце поглотит Меркурий и Венеру, достигнув максимального радиуса 1,2 астрономические единицы.

К тому времени, когда Солнце начнёт расширяться в виде красного гиганта, диаметр орбиты Луны немного возрастёт, а период её обращения увеличится на несколько дней вследствие приливной силы на Земле. В период красного гиганта выбросы из солнечной атмосферы могут привести к быстрому изменению формы лунной орбиты. Как только перигей орбиты приблизится на расстояние 18 470 км, Луна пересечёт предел Роша Земли, и приливное взаимодействие с Землёй разорвёт спутник, превратив её в кольцевую систему. Затем бо́льшая часть колец начнёт разрушаться, и остатки будут сталкиваться с Землёй. Поэтому, даже если Земля не будет поглощена Солнцем, она скорее всего останется без Луны.

Стадия белого карлика

Через 7,6 миллиардов лет от настоящего времени Солнце сбросит оболочки, и в конечном итоге от красного гиганта останется лишь его маленькое центральное ядро — белый карлик, небольшой, горячий, но очень плотный объект, с массой около 54,1 % от первоначальной солнечной. Если Земля сможет избежать поглощения внешними оболочками Солнца во время фазы красного гиганта, то она будет существовать ещё многие миллиарды (и даже триллионы) лет, до тех пор пока будет существовать Вселенная, однако условий для повторного возникновения жизни (по крайней мере, в её нынешнем виде) на Земле не будет. Со вхождением Солнца в фазу белого карлика, поверхность Земли постепенно остынет и погрузится во мрак. Если представить размеры Солнца с поверхности Земли будущего, то оно будет выглядеть не как диск, а как сияющая точка с угловыми размерами около 0°0’9″.

Стадия черного карлика

Через 100 квинтиллионов лет от настоящего времени Земля упала бы на Солнце из-за потери энергии орбитального движения через гравитационное излучение, если бы Земля ранее не была поглощена Солнцем, превратившимся в красный гигант (см. выше), или не выброшена с орбиты гравитационными возмущениями от пролетающих мимо звёзд.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *